SEMILATTICES OF TWO CLASSES OF SEMIGROUPS

HENGWU ZHENG

School of Mathematical Sciences Qufu Normal University Qufu, Shandong 273165 P. R. China e-mail: hwzheng163@163.com

Office of Educational Administration (Rizhao Campus) Qufu Normal University Rizhao, Shandong 276826 P. R. China

Abstract

Right congruences \mathcal{J}^{**} and \mathcal{H}^{**} on a semigroup are introduced, and semigroups which are semilattices of \mathcal{J}^{**} -simple monoids or \mathcal{H}^{**} -simple monoids are characterized.

1. Introduction

For standard terminology and notation in semigroup theory, see Howie [3].

Green [2] introduced a \mathcal{L} -relation on any semigroup $S : a, b \in S$ are \mathcal{L} -related if and only if a and b generate the same principal left ideal.

@ 2014 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 20M10.

Keywords and phrases: semigroup, right congruence, \mathcal{J}^{**} -simple monoid, \mathcal{H}^{**} -simple monoid, semilattice of semigroups.

The author is supported by the National Natural Science Foundation of China (11171180). Received September 4, 2014

For $a, b \in S$, let $a\mathcal{L}^*b$ if and only if a and b are \mathcal{L} -related in some over semigroup of S. It was shown that $a\mathcal{L}^*b$ if and only if for all $x, y \in S^1$,

$$ax = ay$$
 if and only if $bx = by$

(see Fountain [1]).

For any equivalence relation σ on a semigroup S, let σ^r be the relation on S defined by: for any $a, b \in S, a\sigma^r b$ if and only if for all $x, y \in S^1$,

```
ax \sigma ay if and only if bx \sigma by.
```

It is easy to see that σ^r is a right congruence on *S*.

In particular when $\sigma = 1_S$, the equality on S, then $\mathcal{L}^* = 1_S^r$. A particular case is the case where $\sigma = \mathcal{R}$, which was discussed in [5]. The notation $\mathcal{L}^{**} = \mathcal{R}^r$ was introduced and semigroups which are semilattices of \mathcal{L}^{**} -simple monoids was characterized in [5]. Another particular case is the case where $\sigma = \mathcal{D}$, which was discussed in [6]. The notation $\mathcal{D}^{**} = \mathcal{D}^r$ was introduced and semigroups which are semilattices of \mathcal{D}^{**} -simple monoids was characterized in [6]. We known that Green's equivalences are five ones $\mathcal{H}, \mathcal{L}, \mathcal{R}, \mathcal{D}, \mathcal{J}$, and \mathcal{L} and \mathcal{R} are dual. The purpose of this paper is to introduce right congruences \mathcal{J}^r and \mathcal{H}^r , denoted by \mathcal{J}^{**} and \mathcal{H}^{**} , respectively, and to give structure theorems for the class of all semigroups where all idempotents are central and each \mathcal{J}^{**} -class or \mathcal{H}^{**} -class contains an idempotent.

2. Semilattices of \mathcal{K}^{**} -Simple Semigroups

A particular case is the case where $\sigma = \mathcal{J}$, and another particular case is the case where $\sigma = \mathcal{H}$, which are discussed in this section. Let $\mathcal{K} \in \{\mathcal{J}, \mathcal{H}\}$. The notation $\mathcal{K}^{**} = \mathcal{K}^r$ is introduced. The \mathcal{K}^{**} -class containing the element *a* is denoted by K_a^{**} . As usual, E(S) is the set of idempotents of a semigroup *S*.

As the proof of Lemma 1 in [6], we can obtain the following:

Lemma 1. Let S be a semigroup. If the \mathcal{K}^{**} -class K_a^{**} contains an idempotent e, then aKae.

Lemma 2 ([5]). Let S be a semigroup in which the idempotents are central. If σ is a right congruence on S such that each σ -class contains a unique idempotent, then σ is a semilattice congruence on S, and $S / \sigma \cong E(S)$.

Lemma 3. Let S be a semigroup in which the idempotents are central. If each \mathcal{K}^{**} -class contains an idempotent, then \mathcal{K}^{**} is a semilattice congruence on S, S / $\mathcal{K}^{**} \cong E(S)$, and each \mathcal{K}^{**} -class is a monoid.

Proof. (1) When $\mathcal{K} = \mathcal{J}$. By Lemma 1, if the \mathcal{J}^{**} -class J_a^{**} contains an idempotent e, then $a\mathcal{J}ae$. Hence there exists $x, y \in S^1$ such that a = xaey. Since e is in the central of S, we have that xae = exa, hence a = exay. Therefore ea = a = ae. Let $b, c \in J_a^{**} = J_e^{**}$. Then $bc\mathcal{J}^{**}ec$ since \mathcal{J}^{**} is a right congruence on S. Now ec = c, we have $bc\mathcal{J}^{**}c\mathcal{J}^{**}a$. We obtain that J_a^{**} is a monoid with identity e. Since the identity of a monoid is unique, using the centrality of the idempotent, we have that each \mathcal{J}^{**} -class contains a unique idempotent. Since \mathcal{J}^{**} is a right congruence on S, it follows from Lemma 2 that \mathcal{J}^{**} is a semilattice congruence on S, and $S / \mathcal{J}^{**} \cong E(S)$.

(2) When $\mathcal{K} = \mathcal{H}$. By Lemma 1, if the \mathcal{H}^{**} -class H_a^{**} contains an idempotent e, then $a\mathcal{H}ae$. Hence $a\mathcal{J}ae$. It follows from the proof of (1) that ea = a = ae. Similar to the rest of proof of (1), we can obtain that \mathcal{H}^{**} is a semilattice congruence on $S, S / \mathcal{H}^{**} \cong E(S)$, and each \mathcal{H}^{**} -class is a monoid.

Remark. By the proof of Lemma 3, we have that the \mathcal{K}^{**} -class which contains a central idempotent e is a monoid with identity e, and the \mathcal{K}^{**} -class contains a unique idempotent.

To characterize the semigroups which are semilattices of \mathcal{J}^{**} -simple monoids or \mathcal{H}^{**} -simple monoids, we need the following definitions.

A semigroup S is called \mathcal{K}^{**} -simple if $\mathcal{K}^{**} = S \times S$. A semigroup S is called \mathcal{K} -left cancellative if for all $a, x, y \in S$,

 $ax \mathcal{K} ay$ if and only if $x \mathcal{K} y$.

As the proof of Lemma 4 in [6], we can obtain the following:

Lemma 4. A monoid is \mathcal{K}^{**} -simple if and only if it is \mathcal{K} -left cancellative.

Before we give structure theorems for the semigroups in which we are interested, we recall the following notion:

Let Y be a semilattice and for each $\alpha \in Y$, let S_{α} be a monoid with identity e_{α} . Assume that S_{α} are pairwise disjoint. For each $\alpha \geq \beta$ in Y, let $\varphi_{\alpha,\beta}$ be a monoid homomorphism of S_{α} into S_{β} such that

89

(i) $\phi_{\alpha,\alpha}$ is the identity mapping on S_{α} for each $\alpha \in Y$;

(ii)
$$\varphi_{\alpha,\beta}\varphi_{\beta,\gamma} = \varphi_{\alpha,\gamma}$$
 if $\alpha \ge \beta \ge \gamma$ in *Y*.

On $S = \bigcup_{\alpha \in Y} S_{\alpha}$, define a multiplication * by

$$a * b = (a\varphi_{\alpha,\alpha\beta})(b\varphi_{\beta,\alpha\beta}) \ (a \in S_{\alpha}, b \in S_{\beta}).$$

Then (S, *) is a semigroup which is called a *strong semilattice of the* monoids $S_{\alpha}, \alpha \in Y$, and is denoted by $[Y; S_{\alpha}, \varphi_{\alpha,\beta}]$ (see Section III. 7 of [4]).

Lemma 5. Let $S = [Y; S_{\alpha}, \varphi_{\alpha,\beta}]$ be a strong semilattice of the monoids $S_{\alpha}, \alpha \in Y$. If $\alpha \in S_{\alpha}, b \in S_{\beta}$, and $\alpha \not\in b$, then $\alpha = \beta$.

Proof. (1) When $\mathcal{K} = \mathcal{J}$. Since $a\mathcal{J}b$, there exists $x, y \in S^1$ such that a = xby. Consider the following three cases:

(i) When x and y are all 1, then a = b, and so $\alpha = \beta$. Of course, $\alpha\beta = \alpha$.

(ii) When one of x and y is 1, without loss of generality assume that y = 1. Then a = xb. Let $x \in S_{\alpha_1}$. Then $a \in S_{\alpha_1\beta}$, hence $\alpha = \alpha_1\beta$. Thus

$$\alpha\beta = \alpha_1\beta \cdot \beta = \alpha_1\beta = \alpha.$$

(iii) When x and y are not 1, that is, $x, y \in S$, assume that $x \in S_{\alpha_1}, y \in S_{\beta_1}$. Then $a \in S_{\alpha_1\beta\beta_1}$, and so $\alpha = \alpha_1\beta\beta_1 = \alpha_1\beta_1\beta$. Thus $\alpha\beta = \alpha$.

By the previous discussion, we obtain that $\alpha\beta = \alpha$. From $a\mathcal{J}b$, there exists $u, v \in S^1$ such that b = uav. We can similarly obtain that $\beta\alpha = \beta$. But $\alpha\beta = \beta\alpha$. Therefore $\alpha = \beta$.

(2) When
$$\mathcal{K} = \mathcal{H}$$
. Since $a\mathcal{H}b$, $a\mathcal{J}b$. By (1), $\alpha = \beta$.

HENGWU ZHENG

As the proof of Theorem 6 in [6], we can obtain the following theorem, which gives a structure theorem for the class of all semigroups where all idempotents are central and each \mathcal{K}^{**} -class contains an idempotent.

Theorem 6. For a semigroup S in which \mathcal{K} is a left congruence on S, the following are equivalent:

(1) the idempotents of S are central, each \mathcal{K}^{**} -class of S contains an idempotent, and for any a, b in each \mathcal{K}^{**} -class of S, a and b have \mathcal{K} -relation in the \mathcal{K}^{**} -class whenever a and b have \mathcal{K} -relation in S.

(2) S is a strong semilattice of \mathcal{K}^{**} -simple monoids with a unique idempotent, and for any a, b in each \mathcal{K}^{**} -simple monoids, a and b have \mathcal{K} -relation in the \mathcal{K}^{**} -simple monoids whenever a and b have \mathcal{K} -relation in S.

References

- [1] J. B. Fountain, Abundant semigroups, Proc. London Math. Soc. 44 (1982), 103-129.
- [2] J. A. Green, On the structure of semigroups, Annals of Math. 54 (1951), 163-172.
- [3] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
- [4] M. Petrich, Introduction to Semigroups, Merill, Columbus, Ohio, 1973.
- [5] X. J. Tang, Semilattices of L^{**}-simple semigroups, Semigroup Forum 57 (1998), 37-41.
- [6] H. W. Zheng, Semilattices of \mathcal{D}^{**} -simple semigroups, Int. J. Algebra 8 (2014), 643-647.